Notation

BS 5628

A	cross-sectional area of masonry (mm²)
$A_{\rm ps}$	cross-sectional area of prestressing steel (mm²)
$A_{\rm s}^{\rm ps}$	cross-sectional area of primary reinforcing steel (mm²)
$A_{ m sv}^{"}$	cross-sectional area of reinforcing steel resisting shear forces
sv	(mm²)
$A_{\rm s1}$	area of compression reinforcement in the most compressed
51	face (mm²)
$A_{\rm s2}$	area of reinforcement in the least compressed face (mm²)
a	shear span (mm²)
$a_{\rm v}$	distance from face of support to the nearest edge of a princip
v	al load (mm)
b	width of section (mm)
$b_{\rm c}$	width of compression face midway between restraints (mm)
b_1	width of section at level of the tension reinforcement (mm)
c	lever arm factor
d	effective depth (mm)
$d_{\rm c}$	depth of masonry in compression (mm)
d_1	depth from the surface to the reinforcement in the more
	highly compressed face (mm)
d_2	depth of the centroid of the reinforcement from the least
	comp ressed face (mm)
E_c	modulus of elasticity of concrete (kN/mm²)
$E_{\rm m}$	modulus of elasticity of masonry (kN/mm²)
$E_{\rm m}$, $E_{\rm b}$	modulus of elasticity of mortar and brick (kN/mm²)
$E_{\rm s}$	modulus of elasticity of steel (kN/mm²)
E_{x} , E_{y}	modulus of elasticity in x and y direction (kN/mm ²)
e	eccentricity
$e_{\rm a}$	additional eccentricity due to deflection in walls
e_m	the larger of e_x or e_t
e_{t}	total design eccentricity in the mid-height region of a wall
$e_{\rm x}$	eccentricity at top of a wall

$F_{\mathbf{k}}$	characteristic load
F_{t}	tie force
$f_{\rm b}$	characteristic anchorage bond strength between mortar or concrete infill and steel (N/mm²)
f_{ci}	strength of concrete at transfer (N/mm²)
$f_{\rm k}$	characteristic compressive strength of masonry (N/mm²)
$f_{\rm kx}$	characteristic flexural strength (tension) of masonry (N/mm²)
$f_{\rm m}$	masonry strength
$f_{ m pb}$	stress in tendon at the design moment of resistance of the section (N/mm^2)
$f_{\rm pe}$	effective prestress in tendon after all losses have occurred (N/mm²)
$f_{ m pu}$	characteristic tensile strength of prestressing tendons
	(N/mm^2)
$f_{ m s}$	stress in the reinforcement (N/mm²)
$f_{\rm su}$	stress in steel at failure
$f_{\rm s1}$	stress in the reinforcement in the most compressed face
	(N/mm^2)
$f_{ m s2}$	stress in the reinforcement in the least compressed face
	(N/mm^2)
$f_{ m v}$	characteristic shear strength of masonry (N/mm²)
$f_{ m y} G_{ m k}$	characteristic tensile strength of reinforcing steel (N/mm²)
$G_{\rm k}$	characteristic dead load
g_{A}	design vertical load per unit area
$g_{\rm d}$	design vertical dead load per unit area
h	clear height of wall or column between lateral supports
h_{a}	clear height of wall between concrete surfaces or other
	construction capable of providing adequate resistance to
	rotation across the full thickness of a wall
$h_{ m ef}$	effective height or length of wall or column
$h_{ m L}$	clear height of wall to point of application of a lateral load
K	stiffness coefficient
k	multiplication factor for lateral strength of axially loaded walls
L	length
$L_{\rm a}$	span in accidental damage calculation
M	bending moment due to design load (N mm)
$M_{\rm a}$	increase in moment due to slenderness (N mm)
$M_{ m d}$	design moment of resistance (N mm)
$M_{\rm x}$	design moment about the x axis (N mm)
$M_{\rm x}$	effective uniaxial design moment about the x axis (N mm)
$M_{ m v}$	design moment about the <i>y</i> axis (N mm)
$M_{ m v}^{'}$	effective uniaxial design moment about the y axis (N mm)
N ,	design axial load (N)